metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(μ -2-hydroxybenzoato- $\kappa^2 O:O'$)bis-[(2,2'-bipyridine- $\kappa^2 N,N'$)bis(2-hydroxybenzoato- $\kappa^2 O,O'$)bismuth(III)]

Yong-Jing Wang,*‡ Jun Zhao,‡ Zhen-Hua Dang‡ and Li Xu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: yongjing_wang@fjirsm.ac.cn

Received 30 March 2007; accepted 3 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.025; wR factor = 0.063; data-to-parameter ratio = 13.7.

The structure of the title compound, $[Bi_2(C_7H_5O_3)_6(C_{10}H_8N_2)_2]$, consists of centrosymmetric dimeric units in which salicylate ligands bridge two metal centres. The Bi atom is eight-coordinated, with Bi–O and Bi–N bond lengths in the ranges 2.377 (3)–3.044 (3) and 2.387 (3)–2.511 (3) Å, respectively. Each of the salicylate ligands shows an intramolecular hydrogen bond.

Related literature

For related literature, see: Briand & Burford (1999); Guo & Sadler (1999); Sadler *et al.* (1999); Suerbaum & Michetti (2003); Thompson & Orvig (2003); Thurston *et al.* (2002).

Experimental

Crystal data

 $\begin{bmatrix} \text{Bi}_2(C_7\text{H}_5\text{O}_3)_6(C_{10}\text{H}_8\text{N}_2)_2 \end{bmatrix} \\ M_r = 1552.98 \\ \text{Monoclinic, } C2/c \\ a = 21.4583 \text{ (3) Å} \\ b = 13.6698 \text{ (2) Å} \\ c = 21.6097 \text{ (1) Å} \\ \beta = 117.72 \text{ (1)}^\circ$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.486, T_{max} = 1.000$ (expected range = 0.258–0.531)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.063$ S = 1.075322 reflections

Table 1

Selected geometric parameters (Å, °).

Bi1-O7	2.377 (3)	C2-O3	1.325 (8)
Bi1-N2	2.387 (3)	O4-C14	1.269 (5)
Bi1-O5	2.392 (3)	O2-C7	1.253 (5)
Bi1-N1	2.511 (3)	O6-C9	1.342 (6)
Bi1-O2	2.520 (3)	O7-C21	1.283 (5)
Bi1-O1	2.568 (3)	C8-C14	1.473 (6)
Bi1-O4	2.705 (3)	O8-C21	1.262 (5)
Bi1-O8 ⁱ	2.801 (3)	O5-C14	1.277 (5)
O1-C7	1.278 (5)		
O7-Bi1-N2	81.88 (11)	O7-Bi1-O1	76.31 (10)
O7-Bi1-O5	76.88 (11)	N2-Bi1-O1	72.50 (11)
N2-Bi1-O5	78.22 (11)	O2-Bi1-O1	51.16 (10)
N2-Bi1-N1	67.01 (11)	O5-Bi1-O4	51.00 (9)
O5-Bi1-N1	73.19 (11)	N1-Bi1-O4	75.21 (11)
N2-Bi1-O2	77.66 (11)	N1-Bi1-O8 ⁱ	79.84 (10)
N1-Bi1-O2	70.90 (11)	O4-Bi1-O8 ⁱ	65.86 (9)

 $V = 5624.00 (12) \text{ Å}^3$

 $0.2 \times 0.1 \times 0.1 \text{ mm}$

14948 measured reflections

5322 independent reflections

4590 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Mo $K\alpha$ radiation

 $\mu = 6.33 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.028$

388 parameters

 $\Delta \rho_{\rm max} = 0.81 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -1.26~{\rm e}~{\rm \AA}^{-3}$

Z = 4

Symmetry code: (i) -x + 1, -y, -z.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Natural Science Foundation of Fujian Province (grant No. 20473092).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2330).

References

Briand, G. G. & Burford, N. (1999). Chem. Rev. 99, 2601-2658.

Bruker (1997). SMART (Version 5.054) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Guo, Z. & Sadler, P. J. (1999). Angew. Chem. Int. Ed. 38, 1512–1531.

Sadler, P. J., Li, H. & Sun, H. (1999). Coord. Chem. Rev. 185-186, 689-709.

[‡] Present address: Graduate School of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Suerbaum, S. & Michetti, P. (2003). New. Engl. J. Med. 347, 1175-1186.

Thompson, K. H. & Orvig, C. (2003). Science, **300**, 936–939.
Thurston, J. H., Marlier, E. M. & Whitmire, K. H. (2002). Chem. Commun. pp. 2834–2835.

Acta Cryst. (2007). E63, m1770-m1771 [doi:10.1107/S160053680701642X]

Bis(μ -2-hydroxybenzoato- $\kappa^2 O:O'$)bis[(2,2'-bipyridine- $\kappa^2 N,N'$)bis(2-hydroxybenzoato- $\kappa^2 O,O'$)bismuth(III)]

Y.-J. Wang, J. Zhao, Z.-H. Dang and L. Xu

Comment

Bismuth compounds have long been associated with medicine and healthcare for the treatment of various diseases (Thompson & Orvig, 2003; Suerbaum & Michetti, 2003; Briand & Burford, 1999). Bismuth subsalicylate is used to treat some digestive tract disorders such as gastric ulcers and is effective against Helicobacter pylori infection (Guo & Sadler, 1999; Sadler *et al.*, 1999). In the present study, we have synthesized and characterized an isomer of the previously reported compound bis[[(μ_2 -salicylato-O,O')(2,2'- bipyridine)bis(salicylate)bismuth(III)]toluene] (Thurston *et al.*, 2002).

The asymmetric unit of the title compound is composed of one Bi atom, one 2,2'-bipyridine ligand and three salicylate ligands (Fig. 1). The Bi atoms have

two terminal salicylate ligands that chelate the metal through their carboxylate functionality. A third salicylate ion bridges two Bi atoms to form a dimer (Fig.2). The Bi—O(carboxylate) bond lengths range from 2.377 (3) to 2.801 (3) Å. The two N atoms of the 2,2'-bipyridine ligand coordinate to the Bi atom with bond lengths of 2.387 (3) and 2.511 (3) Å.

Each of the salicylate ligands shows an intramolecular H bond.

Experimental

A methanolic solution of $[Bi(Hsal)_3]_n$ (Hsal = $O_2CC_6H_4$ -2-OH) was carefully layered with a methanolic solution of 2,2'bipyridine. The colourless solution was allowed to stand undisturbed at room temperature for one week, during which time large colourless crystals of the title compound deposited on the wall of the tube.

Refinement

All H atoms were included in calculated positions, with C—H = 0.93 Å and O—H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figures

Fig. 1. A view of the asymmetric unit of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

$Bis(\mu-2-hydroxybenzoato-\kappa^2O;O')bis[(2,2'-bipyridine-\kappa^2N,N')bis(2-hydroxybenzoato-\kappa^2O,O')bismuth(III)]$

Crystal d	lata
-----------	------

$[\mathrm{Bi}_2(\mathrm{C}_7\mathrm{H}_5\mathrm{O}_3)_6(\mathrm{C}_{10}\mathrm{H}_8\mathrm{N}_2)_2]$	$F_{000} = 3024$
$M_r = 1552.98$	$D_{\rm x} = 1.834 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 21.4583 (3) Å	Cell parameters from 14948 reflections
b = 13.6698 (2) Å	$\theta = 1.8 - 25.6^{\circ}$
c = 21.60970 (10) Å	$\mu = 6.33 \text{ mm}^{-1}$
$\beta = 117.4720 \ (10)^{\circ}$	T = 293 (2) K
$V = 5624.00 (12) \text{ Å}^3$	Block, colourless
Z = 4	$0.2 \times 0.1 \times 0.1 \text{ mm}$
Data collection	

Bruker SMART CCD area-detector diffractometer	5322 independent reflections
Radiation source: fine-focus sealed tube	4590 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.028$
T = 293(2) K	$\theta_{\text{max}} = 25.6^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: empirical (using intensity measurements)	$h = -26 \rightarrow 18$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.486, T_{\max} = 1.000$	$k = -14 \rightarrow 16$
14948 measured reflections	$l = -24 \rightarrow 26$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.025$	H-atom parameters constrained
$wR(F^2) = 0.063$	$w = 1/[\sigma^2(F_o^2) + (0.0258P)^2 + 23.4426P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.003$
5322 reflections	$\Delta \rho_{max} = 0.81 \text{ e} \text{ Å}^{-3}$
388 parameters	$\Delta \rho_{min} = -1.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Bi1	0.557548 (7)	-0.053031 (12)	-0.039024 (7)	0.02992 (6)
C1	0.5214 (2)	-0.3657 (3)	-0.0917 (3)	0.0446 (12)
N1	0.68538 (18)	-0.0770 (3)	0.04387 (18)	0.0349 (8)
01	0.50042 (16)	-0.1969 (2)	-0.12275 (17)	0.0445 (8)
C2	0.4803 (3)	-0.3989 (5)	-0.1598 (4)	0.0662 (16)
O4	0.58818 (17)	0.0884 (3)	0.05826 (16)	0.0428 (7)
N2	0.62695 (18)	-0.0854 (3)	-0.09692 (17)	0.0318 (8)
O2	0.58232 (17)	-0.2334 (2)	-0.01744 (16)	0.0444 (8)
C3	0.4740 (4)	-0.4984 (6)	-0.1734 (5)	0.104 (3)
H3A	0.4470	-0.5199	-0.2189	0.125*
C4	0.5059 (5)	-0.5651 (5)	-0.1225 (7)	0.108 (3)
H4A	0.5025	-0.6314	-0.1333	0.130*
O3	0.4454 (3)	-0.3395 (4)	-0.2132 (3)	0.1076 (19)
H3B	0.4530	-0.2826	-0.1998	0.161*
C5	0.5443 (4)	-0.5338 (5)	-0.0534 (6)	0.095 (3)

			0.01=0	0.4404
H5A	0.5638	-0.5798	-0.0178	0.113*
C6	0.5535 (3)	-0.4343 (4)	-0.0374 (4)	0.0620 (17)
H6A	0.5804	-0.4136	0.0084	0.074*
06	0.6500 (2)	0.2041 (4)	0.16486 (18)	0.0753 (13)
H6B	0.6269	0.1566	0.1431	0.113*
C7	0.5352 (2)	-0.2600 (3)	-0.0758 (2)	0.0357 (10)
07	0.48413 (17)	0.0242 (2)	-0.14704 (16)	0.0454 (8)
C8	0.6552 (2)	0.2260 (3)	0.0570 (2)	0.0364 (10)
08	0.45182 (16)	0.1136 (2)	-0.08025 (16)	0.0422 (7)
C9	0.6689 (2)	0.2569 (4)	0.1239 (3)	0.0491 (12)
05	0.61390 (16)	0.1012 (2)	-0.02946 (15)	0.0393 (7)
C10	0.7060 (3)	0.3428 (5)	0.1511 (3)	0.0734 (19)
H10A	0.7147	0.3640	0.1952	0.088*
09	0.36991 (19)	0.2678 (3)	-0.13324 (18)	0.0556 (9)
H10B	0.3921	0.2278	-0.1027	0.083*
C11	0.7299 (4)	0.3963 (5)	0.1127 (4)	0.083 (2)
H11A	0.7540	0.4543	0.1310	0.099*
C12	0.7190 (4)	0.3663 (5)	0.0476 (4)	0.0771 (19)
H12A	0.7368	0.4024	0.0229	0.093*
C13	0.6815 (3)	0.2823 (4)	0.0198 (3)	0.0546 (13)
H13A	0.6733	0.2623	-0.0244	0.065*
C14	0.6168 (2)	0.1345 (3)	0.0270 (2)	0.0340 (9)
C15	0.4140 (2)	0.1663 (3)	-0.1969 (2)	0.0383 (10)
C16	0.3771 (2)	0.2473 (4)	-0.1911 (2)	0.0420 (11)
C17	0.3459 (3)	0.3119 (4)	-0.2465 (3)	0.0544 (13)
H17A	0.3210	0.3653	-0.2427	0.065*
C18	0.3513 (3)	0.2983 (5)	-0.3067(3)	0.0651 (16)
H18A	0.3303	0.3428	-0.3431	0.078*
C19	0.3876 (3)	0.2187 (5)	-0.3139 (3)	0.0677 (17)
H19A	0.3916	0.2097	-0.3545	0.081*
C20	0.4177 (3)	0.1531 (4)	-0.2592(2)	0.0527 (13)
H20A	0.4411	0.0987	-0.2641	0.063*
C21	0.4519 (2)	0.0972 (3)	-0.1377(2)	0.0344 (9)
C22	0.7282(2)	-0.1021(3)	0.0166(2)	0.0337 (9)
C23	0 7133 (2)	-0.0643(4)	0 1133 (2)	0.0441 (11)
H23A	0.6838	-0.0475	0 1324	0.053*
C24	0.7843 (3)	-0.0755(4)	0.1572 (3)	0.0527 (13)
H24A	0.8023	-0.0658	0.2050	0.063*
C25	0.8278 (3)	-0.1012(5)	0.1290 (3)	0.055
H25A	0.8757	-0.1093	0.1576	0.068*
C26	0.7999 (2)	-0.1150(4)	0.0581 (3)	0.0487(12)
Н264	0.8286	-0.1326	0.0383	0.058*
C27	0.6266 (2)	-0.1129 (3)	-0.0610(2)	0.030
C28	0.5949(3)	-0.0908(4)	-0.1671(2)	0.0327(9) 0.0432(11)
H28A	0.5481	-0.0719	-0.1916	0.052*
C20	0.6203 (2)	-0 1232 (4)	-0.2037(2)	0.032
U29 H20A	0.0293 (3)	-0.12/2	-0.2522	0.0404(12)
C20	0.0004	0.1243	-0.1674(2)	0.0501 (12)
	0.07/0 (3)	-0.1340 (4)	-0.10/4(3)	0.0301 (12)
пзиа	0.7213	-0.1/81	-0.1911	0.000*

C31	0.7314 (2)	-0.1489 (4)	-0.0953 (3)	0.0429 (11)
H31A	0.7779	-0.1692	-0.0700	0.051*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi1	0.02658 (9)	0.03395 (10)	0.02873 (9)	-0.00108 (7)	0.01234 (7)	-0.00507 (7)
C1	0.032 (2)	0.034 (3)	0.070 (3)	-0.0048 (19)	0.025 (2)	-0.009 (2)
N1	0.0298 (18)	0.040 (2)	0.0309 (18)	-0.0038 (15)	0.0108 (15)	-0.0025 (15)
01	0.0339 (16)	0.044 (2)	0.0443 (18)	0.0015 (14)	0.0083 (14)	-0.0036 (15)
C2	0.048 (3)	0.058 (4)	0.079 (4)	-0.006 (3)	0.017 (3)	-0.027 (3)
O4	0.0433 (18)	0.049 (2)	0.0395 (17)	-0.0098 (15)	0.0222 (15)	-0.0006 (15)
N2	0.0301 (18)	0.036 (2)	0.0293 (18)	-0.0007 (15)	0.0134 (15)	-0.0029 (15)
O2	0.0482 (19)	0.0413 (19)	0.0378 (17)	-0.0042 (15)	0.0148 (15)	-0.0065 (14)
C3	0.071 (5)	0.069 (5)	0.151 (8)	-0.024 (4)	0.034 (5)	-0.070 (6)
C4	0.074 (5)	0.042 (4)	0.204 (11)	-0.014 (4)	0.060 (6)	-0.039 (6)
O3	0.101 (4)	0.097 (4)	0.076 (3)	-0.003 (3)	-0.001 (3)	-0.038 (3)
C5	0.068 (4)	0.047 (4)	0.172 (9)	0.003 (3)	0.059 (5)	0.019 (5)
C6	0.051 (3)	0.041 (3)	0.106 (5)	-0.001 (2)	0.047 (4)	0.008 (3)
O6	0.064 (2)	0.128 (4)	0.041 (2)	-0.041 (3)	0.0304 (19)	-0.030 (2)
C7	0.028 (2)	0.040 (3)	0.043 (3)	-0.0014 (19)	0.020 (2)	-0.007 (2)
07	0.0451 (18)	0.0417 (19)	0.0389 (17)	0.0097 (15)	0.0105 (15)	-0.0041 (14)
C8	0.033 (2)	0.036 (3)	0.037 (2)	-0.0035 (18)	0.0127 (19)	-0.0045 (19)
08	0.0476 (18)	0.0439 (19)	0.0367 (17)	0.0040 (15)	0.0207 (15)	0.0061 (14)
C9	0.034 (2)	0.065 (4)	0.046 (3)	-0.006 (2)	0.017 (2)	-0.017 (2)
O5	0.0432 (17)	0.0426 (19)	0.0347 (16)	-0.0098 (14)	0.0201 (14)	-0.0088 (14)
C10	0.065 (4)	0.078 (5)	0.072 (4)	-0.023 (3)	0.027 (3)	-0.044 (4)
09	0.065 (2)	0.051 (2)	0.055 (2)	0.0181 (18)	0.0319 (19)	0.0082 (17)
C11	0.082 (5)	0.043 (4)	0.101 (6)	-0.021 (3)	0.023 (4)	-0.017 (4)
C12	0.091 (5)	0.048 (4)	0.080 (4)	-0.026 (3)	0.029 (4)	0.008 (3)
C13	0.059 (3)	0.044 (3)	0.052 (3)	-0.011 (2)	0.018 (3)	0.004 (2)
C14	0.034 (2)	0.036 (3)	0.031 (2)	-0.0019 (18)	0.0141 (18)	-0.0006 (18)
C15	0.031 (2)	0.042 (3)	0.035 (2)	-0.0033 (19)	0.0092 (18)	0.001 (2)
C16	0.035 (2)	0.044 (3)	0.043 (3)	0.000 (2)	0.014 (2)	0.002 (2)
C17	0.051 (3)	0.045 (3)	0.054 (3)	0.006 (2)	0.014 (3)	0.010 (2)
C18	0.068 (4)	0.065 (4)	0.045 (3)	0.007 (3)	0.011 (3)	0.022 (3)
C19	0.074 (4)	0.087 (5)	0.037 (3)	0.011 (3)	0.021 (3)	0.012 (3)
C20	0.052 (3)	0.061 (4)	0.040 (3)	0.007 (3)	0.017 (2)	0.003 (2)
C21	0.027 (2)	0.033 (2)	0.036 (2)	-0.0046 (18)	0.0083 (18)	-0.0016 (19)
C22	0.028 (2)	0.032 (2)	0.040 (2)	-0.0027 (17)	0.0150 (18)	0.0056 (19)
C23	0.039 (2)	0.057 (3)	0.034 (2)	-0.007 (2)	0.014 (2)	-0.002 (2)
C24	0.042 (3)	0.066 (4)	0.036 (3)	-0.008 (2)	0.007 (2)	0.005 (2)
C25	0.030 (2)	0.080 (4)	0.046 (3)	0.001 (3)	0.006 (2)	0.013 (3)
C26	0.031 (2)	0.066 (4)	0.048 (3)	0.002 (2)	0.017 (2)	0.009 (3)
C27	0.033 (2)	0.030 (2)	0.036 (2)	-0.0010 (17)	0.0165 (18)	0.0031 (18)
C28	0.043 (3)	0.056 (3)	0.030 (2)	-0.001 (2)	0.017 (2)	-0.007 (2)
C29	0.060 (3)	0.054 (3)	0.038 (3)	-0.002 (2)	0.028 (2)	-0.008 (2)
C30	0.058 (3)	0.051 (3)	0.055 (3)	0.000 (2)	0.038 (3)	-0.009 (2)

C31	0.039 (2)	0.043 (3)	0.054 (3)	0.002 (2)	0.028 (2)	-0.001 (2)
Geometric parar	meters (Å, °)					
Bi1—O7		2.377 (3)	C1	0—C11		1.370 (10)
Bi1—N2		2.387 (3)	C1	0—H10A		0.9300
Bi1—O5		2.392 (3)	09	—C16		1.358 (6)
Bi1—N1		2.511 (3)	09	—Н10В		0.8200
Bi1—O2		2.520 (3)	C1	1—C12		1.377 (10)
Bi1—O1		2.568 (3)	C1	1—H11A		0.9300
Bi1—O4		2.705 (3)	C1	2—C13		1.371 (8)
Bi1—O8 ⁱ		2.801 (3)	C1	2—H12A		0.9300
C1—C2		1.399 (8)	C1	3—H13A		0.9300
C1—C6		1.409 (8)	C1	5—C20		1.397 (7)
C1—C7		1.482 (6)	C1	5—C16		1.400 (7)
N1—C23		1.345 (6)	C1	5—C21		1.493 (6)
N1—C22		1.346 (5)	C1	6—C17		1.386 (7)
O1—C7		1.278 (5)	C1	7—C18		1.370 (8)
C2—O3		1.325 (8)	C1	7—H17A		0.9300
C2—C3		1.385 (9)	C1	8—C19		1.389 (9)
O4—C14		1.269 (5)	C1	8—H18A		0.9300
N2—C27		1.347 (5)	C1	9—C20		1.383 (7)
N2—C28		1.347 (5)	C1	9—H19A		0.9300
O2—C7		1.253 (5)	C2	0—H20A		0.9300
C3—C4		1.346 (13)	C2	2—C26		1.389 (6)
С3—НЗА		0.9300	C2	2—C27		1.494 (6)
C4—C5		1.398 (13)	C2	3—C24		1.383 (7)
C4—H4A		0.9300	C2	3—Н23А		0.9300
O3—H3B		0.8200	C2	4—C25		1.375 (8)
C5—C6		1.395 (9)	C2	4—H24A		0.9300
C5—H5A		0.9300	C2	5—C26		1.377 (7)
С6—Н6А		0.9300	C2	5—H25A		0.9300
O6—C9		1.342 (6)	C2	6—H26A		0.9300
O6—H6B		0.8200	C2	7—C31		1.399 (6)
O7—C21		1.283 (5)	C2	8—C29		1.381 (6)
С8—С9		1.401 (6)	C2	8—H28A		0.9300
C8—C13		1.405 (7)	C2	9—C30		1.375 (7)
C8—C14		1.473 (6)	C2	9—H29A		0.9300
O8—C21		1.262 (5)	C3	0—C31		1.384 (7)
O8—Bi1 ⁱ		2.801 (3)	C3	0—H30A		0.9300
C9—C10		1.388 (8)	C3	1—H31A		0.9300
O5—C14		1.277 (5)				
O7—Bi1—N2		81.88 (11)	C1	4—O5—Bi1		101.3 (3)
O7—Bi1—O5		76.88 (11)	C1	1—С10—С9		119.8 (6)
N2—Bi1—O5		78.22 (11)	C1	1—C10—H10A		120.1
O7—Bi1—N1		140.29 (12)	С9	—С10—Н10А		120.1
N2—Bi1—N1		67.01 (11)	C1	6—O9—H10B		109.5
O5—Bi1—N1		73.19 (11)	C1	0—C11—C12		121.6 (6)

O7—Bi1—O2	127.14 (11)	C10-C11-H11A	119.2
N2—Bi1—O2	77.66 (11)	C12—C11—H11A	119.2
O5—Bi1—O2	142.33 (11)	C13—C12—C11	119.1 (6)
N1—Bi1—O2	70.90 (11)	C13—C12—H12A	120.5
O7—Bi1—O1	76.31 (10)	C11—C12—H12A	120.5
N2—Bi1—O1	72.50 (11)	C12—C13—C8	121.2 (5)
O5—Bi1—O1	142.54 (10)	С12—С13—Н13А	119.4
N1—Bi1—O1	114.34 (11)	C8—C13—H13A	119.4
O2—Bi1—O1	51.16 (10)	O4—C14—O5	120.6 (4)
O7—Bi1—O4	105.02 (10)	O4—C14—C8	119.8 (4)
N2—Bi1—O4	123.59 (10)	O5—C14—C8	119.6 (4)
O5—Bi1—O4	51.00 (9)	C20-C15-C16	118.3 (4)
N1—Bi1—O4	75.21 (11)	C20—C15—C21	119.6 (4)
O2—Bi1—O4	126.92 (10)	C16—C15—C21	122.0 (4)
O1—Bi1—O4	163.90 (10)	O9—C16—C17	116.7 (5)
O7—Bi1—O8 ⁱ	137.59 (10)	O9—C16—C15	123.7 (4)
N2—Bi1—O8 ⁱ	138.97 (11)	C17—C16—C15	119.6 (5)
O5—Bi1—O8 ⁱ	115.41 (10)	C18—C17—C16	121.0 (5)
N1—Bi1—O8 ⁱ	79.84 (10)	C18—C17—H17A	119.5
O2—Bi1—O8 ⁱ	68.84 (10)	С16—С17—Н17А	119.5
O1—Bi1—O8 ⁱ	102.03 (10)	C17—C18—C19	120.7 (5)
O4—Bi1—O8 ⁱ	65.86 (9)	C17—C18—H18A	119.7
C2—C1—C6	119.3 (5)	C19—C18—H18A	119.7
C2—C1—C7	121.4 (5)	C20-C19-C18	118.6 (5)
C6—C1—C7	119.2 (5)	С20—С19—Н19А	120.7
C23—N1—C22	118.6 (4)	C18—C19—H19A	120.7
C23—N1—Bi1	123.8 (3)	C19—C20—C15	121.8 (5)
C22—N1—Bi1	117.5 (3)	С19—С20—Н20А	119.1
C7—O1—Bi1	92.5 (3)	C15—C20—H20A	119.1
O3—C2—C3	117.2 (7)	O8—C21—O7	122.6 (4)
O3—C2—C1	123.1 (6)	O8—C21—C15	118.9 (4)
C3—C2—C1	119.6 (7)	O7—C21—C15	118.5 (4)
C14—O4—Bi1	86.9 (2)	N1—C22—C26	121.7 (4)
C27—N2—C28	119.3 (4)	N1—C22—C27	116.3 (4)
C27—N2—Bi1	121.1 (3)	C26—C22—C27	122.0 (4)
C28—N2—Bi1	118.8 (3)	N1—C23—C24	122.3 (5)
C7—O2—Bi1	95.5 (3)	N1—C23—H23A	118.9
C4—C3—C2	121.9 (8)	C24—C23—H23A	118.9
С4—С3—НЗА	119.0	C25—C24—C23	118.8 (5)
С2—С3—НЗА	119.0	C25—C24—H24A	120.6
C3—C4—C5	119.5 (7)	C23—C24—H24A	120.6
C3—C4—H4A	120.3	C24—C25—C26	119.5 (5)
C5—C4—H4A	120.3	C24—C25—H25A	120.2
С2—О3—НЗВ	109.5	C26—C25—H25A	120.2
C6—C5—C4	120.6 (8)	C25—C26—C22	119.0 (5)
С6—С5—Н5А	119.7	C25—C26—H26A	120.5
C4—C5—H5A	119.7	C22—C26—H26A	120.5

C5—C6—C1	118.9 (7)	N2-C27-C31	121.0 (4)
С5—С6—Н6А	120.6	N2—C27—C22	116.9 (4)
C1—C6—H6A	120.6	C31—C27—C22	122.1 (4)
С9—О6—Н6В	109.5	N2—C28—C29	122.2 (5)
O2—C7—O1	120.5 (4)	N2—C28—H28A	118.9
O2—C7—C1	119.9 (4)	C29—C28—H28A	118.9
O1—C7—C1	119.6 (4)	C30—C29—C28	118.9 (5)
C21—O7—Bi1	110.6 (3)	С30—С29—Н29А	120.5
C9—C8—C13	118.4 (4)	С28—С29—Н29А	120.5
C9—C8—C14	121.2 (4)	C29—C30—C31	119.5 (4)
C13—C8—C14	120.3 (4)	С29—С30—Н30А	120.2
C21—O8—Bi1 ⁱ	152.4 (3)	C31—C30—H30A	120.2
O6—C9—C10	117.8 (5)	C30—C31—C27	119.0 (4)
O6—C9—C8	122.3 (5)	C30—C31—H31A	120.5
C10—C9—C8	119.9 (5)	C27—C31—H31A	120.5
Symmetry codes: (i) $-x+1, -y, -z$.			

Fig. 2

